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Cascades

About the demo

Waterfalls flowing over procedural rock built on 
GPU

Runs on Windows Vista, DirectX 10
Heavily Utilizes:

Geometry Shaders
Stream Out
Render to 3D Texture
Pixel Shaders

CPU virtually idle, even when 
generating new slices of rock. Demo
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Cascades

What’s the GPU doing here?

• Building complex procedural rock 
structures.

• Managing dynamic water particle system & 
physics (collisions with rock).

• Swarm of dragonflies buzzes around, 
avoiding the rock.

• Heavy-duty pixel shaders.
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Main Topics to Cover

1. Rock Generation
2. Rock Rendering
3. Water (Particle System, Rendering)
4. Swarming Bugs



Rock Generation
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Building the Rock: Overview

Step 1: Render to slices of a 3D texture
Render a “density” value into each voxel.
(+) values will become rock, (–) values, air.

Step 2: Precompute some lighting info. 
Compute normals
Cast occlusion rays

Step 3: Generate & store polygons
Use ‘Marching Cubes’ algorithm on each cell.

(…all on the GPU.)
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Building the Rock

Step 1:  Render to 3D (volume) texture
3D Texture:

Format:       DXGI_FORMAT_R16_FLOAT (one 16-bit float)
Size: 96 x 96 x 256
Memory:      < 5 MB
Contents:    Density values (positive ~ rock, negative ~ air)

To generate slices of rock, we render “fullscreen
quads” to 2D slices of the 3D texture.  

Heavy pixel shader math to figure out the density 
value at each pixel (voxel).  (160 instructions)
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Building the Rock

Add several base shapes together:
1. Three roaming vertical pillars (cylinders) (+)
2. One negative pillar, to create open space 

in the center  (–)
3. Shelves – a function of the Y coordinate only; 

periodically creates a shelf of rock.    (+)
4. Helix – biases half of the space toward rock, half 

toward air.     (+/–)
5. Noise – four octaves of random noise 

sampled from small 3D textures (+/–)
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Looking at a Y-slice 
of rock:

( …value starts at 
zero everywhere. )

float f = 0;



Add a pillar:

( …pillar center
roams in XZ plane
from slice to slice;
stored in a 
constant buffer. )

f += 1 / length(ws.xz – pillar.xy) - 1;



3-pillar version: 

for k = 0,1,2
f += 1 / length(ws.xz – pillar[k].xy) - 1;



Add negative values 
going down 
the center:  

( water flow 
channel )

f -= 1 / length(ws.xz) - 1;



Add strong
negative values 
at outer edge.

Keeps solid rock
“in bounds”.

f = f – pow( length(ws.xz), 3 );



Helix:

Add + and – values 
on opposite sides.

Rotate the values
as the slice’s Y coord
changes.

float2 vec = float2(cos(ws.y), sin(ws.y));
f += dot(vec, ws.xz);



Shelves:

Periodically add 
positive values
based on slice’s
Y coord.

f += cos( ws.y );
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Building the Rock

Next, add Noise for a more natural look.

In 1D case, create noise by adding several 
octaves of random signals.

Signal at each octave has:
half the amplitude 
~twice the frequency 

of the previous octave.
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Add all of the above & you get… a mountain:
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Building the Rock

1D noise ~ mountain silhouette.
2D noise ~ terrain height map.
3D noise ~ a bunch of +/– values in 3D 
space.  
When added to the simpler basis functions 
(cylinder, helix, etc) they add nice fractal 
detail to our rock’s shape.
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Building the Rock

Noise on the GPU:
Each octave is a 3D texture of random floats. 
Size: 16 x 16 x 16
Range:  [-1..1]

Sample 4 octaves & sum the results.
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To avoid visual repetition:
Avoid lacunarity of exactly 2.0.
Randomly rotate input to each octave.

(each octave has own 3x3 rotation matrix)
Translation not necessary.
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Building the Rock

Advantages of noise-based geometry:
Yields visually rich & non-repeating “terrain”
Every little bit of geometry preserved.
Save your favorites.
Preset files (scenes) use only 3 kilobytes.
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Normals & Occlusion

Step 2: Precompute lighting information.

Render to slices of a second 3D texture.
This one will store lighting info.

Use first 3D Texture (densities) to compute 
normal vector and ambient occlusion factor. 

Store both in a rgba8 volume texture
.xyz normal      (packed)
.w    occlusion
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Normals & Occlusion

Normal vector is simply the gradient of 
the density values.

float3 ComputeNormal( Texture3D tex, SamplerState s, 
float3 uvw) { 

float4 step = float4(inv_voxelDim, 0);
float3 gradient = float3(

tex.SampleLevel(s, uvw + step.xww, 0) 
- tex.SampleLevel(s, uvw - step.xww, 0),

tex.SampleLevel(s, uvw + step.wwy, 0) 
- tex.SampleLevel(s, uvw - step.wwy, 0),

tex.SampleLevel(s, uvw + step.wzw, 0) 
- tex.SampleLevel(s, uvw - step.wzw, 0) 

);
return normalize(-gradient);

}
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Normals & Occlusion

Ambient occlusion
factor tells us, at any 
point, what % of 
random rays cast out 
would hit the rock (vs. 
escaping into the 
environment).

Used to shade the 
rock, so recesses 
appear darker.
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Normals & Occlusion

Occlusion factor generated by casting 32 
rays, testing for collisions with the rock.

Sample the densities at each point along ray; 
‘collision’ when a positive density is found.
The 32 rays are in a 3D poisson distribution. 
Take 16 samples per ray.
Distance-wise, march through 20% of the width.
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Normals & Occlusion

Why do we need lighting data everywhere?
Why not just per vertex?

Knowing occlusion data lets us light anything in the 
rock volume.

Dragonflies
Water
Vines (easter egg – see args.txt)

Normals speed up water flow & vine-crawl 
calculations.
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Generating Polygons

Step 3: Generate polygons via Marching Cubes

Constructs a polygonal surface where 
densities equal zero.
Works on one voxel (cell) at a time.

INPUT: the density at each of the 8 corners
8 corners “in”/”out” 256 possible cases (28)

OUTPUT: 0 to 5 polygons 

(Note: patent expired; free to use)
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Generating Polygons

To generate a slice of rock:

“Draw” dummy vertex buffer of 96x96 points
Points have uv coords in [0..1] range.

Pipeline:  VS GS VB 
Pixel shader disabled

Vertex Shader:
Samples densities at 8 corners
Determines the MC case
Passes this data on to GS
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Geometry Shader uses:
Dynamic Indexing
Lookup Tables (constant buffers)
Dynamic Branching
Stream Output (variable # of primitives)

…to generate polygons. 

Output primitive type: Triangle List
Appends 0, 3, 6, 9, 12, or 15 vertices to 
a VB.
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Generating Polygons

More on the Geometry Shader (GS):
Heavy use of lookup tables
One translates case # of polygons to output 
One tells you which cell edges to place the 3 verts
on, for each triangle emitted.
Resulting vertices (a triangle list) are streamed out 
to a vertex buffer (VB).
We used one VB for every 12 slices (voxel layers) of 
the rock.*  
VB’s are created at startup and never resized. 

Memory footprint: we needed about 22 bytes of video 
memory for each voxel in the VB.
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Generating Polygons

Notes on coordinate spaces:
In world space…

…+Y is up, although in the 3D texture, that’s +Z.  
(you can render to Z slices of a volume; but not to X or Y 
slices)

…the rock spans [-1..1] in X and Z and can roam on Y.
…the rock bounding box size is 2.0 in X and Z, and 5.333 
in Y.     (2.0 * 256/96)

In UVW (3D texture) space…
Coordinates range from [0..1] in x, y, z.
“slices” are along Z (not Y!).

Texels in the 3D texture correspond to cell 
*corners*.  If a texture slice is 96x96, then there are 
95x95 cells (or voxels).



© NVIDIA Corporation 2006

Generating Polygons

Some handy global constants:
float  WorldSpaceVolumeHeight = 2.0*(256/96.0);
float3 voxelDim = float3(96, 256, 96);
float3 voxelDimMinusOne = float3(95, 256, 95);
float3 wsVoxelSize = 2.0/95.0;
float4 inv_voxelDim = float4( 1.0/voxelDim, 0 );     
float4 inv_voxelDimMinusOne

= float4( 1.0/voxelDimMinusOne, 0 );
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Generating Polygons

Most of this is easily borrowed from the 
demo…

1. Generate your own density values
2. Copy our 3 shaders for getting normals / 

occlusion.
3. Copy our 2 shaders for rock generation.
4. Also grab contents of a few constant 

buffers – see models\sceneBS.nma
(or see notes this slide).
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Marching Cubes Vertex Shader [1]
// This vertex shader is fed 95*95 points, one for each *cell* we'll run M.C. on. 
// To generate > 1 slice in a single frame, we call DrawInstanced(N), 
//   and it repeats it N times, each time setting nInstanceID to [0 .. N-1].

// per-vertex input attributes: [never change]
struct vertexInput { 

float2 uv : POSITION;      // 0..1 range
uint nInstanceID : SV_InstanceID;

};

struct vsOutputGsInput {         // per-vertex outputs:
float3 wsCoord : POSITION; // coords for LOWER-LEFT corner of the cell
float3 uvw : TEX;      
float4 f0123       : TEX1;     // the density values 
float4 f4567       : TEX2;     //   at the 8 cell corners
uint mc_case : TEX3;     // 0-255

};

Texture3D    tex; // our volume of density values. (+=rock, -=air)
SamplerState s;   // trilinear interpolation; clamps on XY, wraps on Z.

cbuffer SliceInfos {
// Updated each frame.  To generate 5 slices this frame, 
// app has to put their world-space Y coords in slots [0..4] here.
float slice_world_space_Y_coord[256]; 

}

// converts a point in world space to 3D texture space (for sampling the 3D texture):
#define WS_to_UVW(ws) (float3(ws.xz*0.5+0.5, ws.y*WorldSpaceVolumeHeight).xzy)



© NVIDIA Corporation 2006

Marching Cubes Vertex Shader [2]

v2gConnector main(vertexInput vtx) 
{

// get world-space coordinates & UVW coords of lower-left corner of this cell
float3 wsCoord;
wsCoord.xz = vtx.uv.xy*2-1;
wsCoord.y = slice_world_space_Y_coord[ vtx.nInstanceID ];
float3 uvw = WS_to_UVW( wsCoord );

// sample the 3D texture to get the density values at the 8 corners
float2 step = float2(worldSpaceVoxelSize, 0);
float4 f0123 = float4(  tex.SampleLevel(s, uvw + step.yyy, 0).x,

tex.SampleLevel(s, uvw + step.yyx, 0).x,
tex.SampleLevel(s, uvw + step.xyx, 0).x,
tex.SampleLevel(s, uvw + step.xyy, 0).x  );

float4 f4567 = float4(  tex.SampleLevel(s, uvw + step.yxy, 0).x,
tex.SampleLevel(s, uvw + step.yxx, 0).x,
tex.SampleLevel(s, uvw + step.xxx, 0).x,
tex.SampleLevel(s, uvw + step.xxy, 0).x  );

// determine which of the 256 marching cubes cases we have for this cell:
uint4 n0123 = (uint4)saturate(f0123*99999);
uint4 n4567 = (uint4)saturate(f4567*99999);
uint mc_case = (n0123.x     ) | (n0123.y << 1) | (n0123.z << 2) | (n0123.w << 3)

| (n4567.x << 4) | (n4567.y << 5) | (n4567.z << 6) | (n4567.w << 7);

... 
// fill out return struct using these values, then on to the Geometry Shader.

}
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Marching Cubes Vertex Shader

// sample the iso-value at the 8 corners
float2 step = float2(worldSpaceVoxelSize, 0);
float4 f0123 = float4( tex.SampleLevel(s, uvw + step.yyy, 0).x,

tex.SampleLevel(s, uvw + step.yyx, 0).x,
tex.SampleLevel(s, uvw + step.xyx, 0).x,
tex.SampleLevel(s, uvw + step.xyy, 0).x);

float4 f4567 = float4( tex.SampleLevel(s, uvw + step.yxy, 0).x,
tex.SampleLevel(s, uvw + step.yxx, 0).x,
tex.SampleLevel(s, uvw + step.xxx, 0).x,
tex.SampleLevel(s, uvw + step.xxy, 0).x); 

// determine which of the 256 marching cubes cases for this cell:
uint4 n0123 = (uint4)saturate( f0123 * 99999 );
uint4 n4567 = (uint4)saturate( f4567 * 99999 );
uint mc_case =  (n0123.x     ) | (n4567.x << 4) 

| (n0123.y << 1) | (n4567.y << 5)
| (n0123.z << 2) | (n4567.z << 6) 
| (n0123.w << 3) | (n4567.w << 7);
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Marching Cubes Geom. Shader

// GEOMETRY SHADER INPUTS:

struct vsOutputGsInput {
float4 wsCoord : POSITION; 
float3 uvw : TEX; 
float4 f0123   : TEX1;  // the density values 
float4 f4567   : TEX2;  //   at the corners
uint mc_case : TEX3;  // 0-255

};

struct GSOutput {
// Stream out to a VB & save for reuse!
// .xyz = wsCoord, .w = occlusion
float4 wsCoord_Ambo : POSITION;
float3 wsNormal : NORMAL;       

};

// our volume of density values.
Texture3D    tex; 

// .xyz = low-quality normal; .w = occlusion
Texture3D    grad_ambo_tex; 

// trilinear interp; clamps on XY, wraps on Z.
SamplerState s;   

cbuffer g_mc_lut1 {
uint

case_to_numpolys[256];
float4 cornerAmask0123[12];
float4 cornerAmask4567[12];
float4 cornerBmask0123[12];
float4 cornerBmask4567[12];
float3 vec_start[12];
float3 vec_dir [12];

};

cbuffer g_mc_lut2 {
int4 g_triTable[1280]; 

//5*256
};
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[maxvertexcount (15)]
void main( inout TriangleStream<GSOutput> Stream, 

point vsOutputGsInput input[1] )
{
GSOutput output;
uint num_polys = case_to_numpolys[ input[0].mc_case ];
uint table_pos = mc_case*5;
for (uint p=0; p<num_polys; p++) {  
int4 polydata = g_triTable[ table_pos++ ];
output = PlaceVertOnEdge( input[0], polydata.x );     
Stream.Append(output);
output = PlaceVertOnEdge( input[0], polydata.y );     
Stream.Append(output);
output = PlaceVertOnEdge( input[0], polydata.z );     
Stream.Append(output);
Stream.RestartStrip();

}
}

Marching Cubes Geom. Shader
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GSOutput PlaceVertOnEdge( vsOutputGsInput input, int edgeNum ) 
{
// Along this cell edge, where does the density value hit zero?
float str0 = dot(cornerAmask0123[edgeNum], input.field0123) + 

dot(cornerAmask4567[edgeNum], input.field4567);
float str1 = dot(cornerBmask0123[edgeNum], input.field0123) + 

dot(cornerBmask4567[edgeNum], input.field4567);
float t = saturate( str0/(str0 - str1) );  //0..1

// use that to get wsCoord and uvw coords
float3 pos_within_cell = vec_start[edgeNum] 

+ t * vec_dir[edgeNum]; //[0..1]
float3 wsCoord = input.wsCoord.xyz

+ pos_within_cell.xyz * wsVoxelSize;
float3 uvw = input.uvw + ( pos_within_cell *

inv_voxelDimMinusOne ).xzy;

GSOutput output;
output.wsCoord_Ambo.xyz = wsCoord;
output.wsCoord_Ambo.w = grad_ambo_tex.SampleLevel(s, uvw, 0).w;
output.wsNormal = ComputeNormal(tex, s, uvw);
return output;

}

Marching Cubes Geom. Shader



“Floaters”: annoying 
chunks of levitating rock.

When generating 2D 
height maps from noise, 
you get small islands – no 
problem.

In 3D, you get floating 
rocks…
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Floaters

Difficult to reliably kill polygons on small 
floaters.

How does an ant 
know if he’s on   a 
1 meter3 rock or a 
10 meter3 rock?
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Floaters

The Floater Test: for each voxel in which we 
generate polygons…

Cast out a bunch of rays.
Track longest distance a ray could go without 
exiting the rock.
Gives a good estimate of the size of the rock.

If “parent rock” small, don’t generate 
polygons for this voxel.

Fast dynamic branching very helpful.

Second pass can help too. (See notes)







Shading
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Shading

Rock rendered in one pass with one 
big pixel shader
398 instructions, not counting loops.
Shading topics to cover: 

Texture coordinate generation
Lighting
‘Wet Rock’ effects
Detail maps
Displacement Mapping
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Texture Coordinate Woes

Texture mapping: UV Layout

Games: models have manually-created UV 
layouts for texture mapping.
No good for procedural geometry with 
arbitrary topology.
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Planar projection along one axis:
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Tri-Planar Texturing

Solution: Tri-Planar Texturing

Project 3 different (repeating) 2D textures 
along X, Y, and Z axes; blend between them 
based on surface normal.

For surface points facing mostly in +X or –X, 
use the YZ projection… etc.

Minimizes stretching / streaking.







Deliberately  
Bad Example 
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Tri-planar Texturing

For each pixel:

1. For each projection (X, Y, Z):
a. project (convert wsCoord to UV coord)
b. determine surface color & normal based on that 
projection

2.  Blend between the 3 colors & normals based on the 
original (unbumped / vertex) normal.   
[next slide]
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Blending the 3 together…

Blending amount based on abs( normal ), 
but blend ‘zone’ is narrowed via a scale & 
bias.

float3 blend_weights = abs(N_orig) - 0.2;
blend_weights *= 7;
blend_weights = pow(blend_weights, 3);
blend_weights = max(0, blend_weights);
// and so they sum to 1.0:
blend_weights /= dot(blend_weights, 1);
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Low-frequency Color Noise

Repeating textures can get dull…
Reduce monotony by sampling a 3D noise 
texture at a low frequency, and using that to 
vary  the surface color.

const float freq = 0.17;
float3 noiseVal = noiseTex3D.Sample(      

LinearRepeat, wsCoord*freq ).xyz;
moss_color.xyz *= 0.9 + 0.1*noiseVal;
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Colorization (exaggerated)No colorization



© NVIDIA Corporation 2006

Lighting

3 directional lights, no shadows.
Typical diffuse and phong specular lighting.
To save math, lighting is (dynamically) baked into 
two float4_16 cube maps:

Equation   Face size
1. Diffuse light cube (N-dot-L) 16x16
2. Specular light cube     (R-dot-L)^64 32x32

Lighting influenced by bump vectors & ambient 
occlusion values from rock generation process.
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Lighting

Diffuse light modulated by occlusion 
value as-is.

Specular light falls off more quickly.
Spec is modulated by:

saturate((occlusion – 0.2) / 0.2)

Makes specular highlights fall off very 
quickly in recesses.



No ambient occlusion



Occlusion reducing 
diffuse light only



Occlusion reducing
diffuse and specular light
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Wet Rock

Rock gets wet 
when water flows 
nearby.

Tiny water ripples 
also visible, 
flowing down the 
rock.

Remove waterfalls 
wet rock dries 

up over time.



Demo
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Wet Rock

Wetness Map, a 3D texture, tracks where 
water has been flowing.

½ resolution (48 x 48 x 128) 

When shading rock, sample wetness map to 
know how wet a pixel should be.
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Wet Rock

Making the rock look wet:
1. Darken diffuse color
2. Increase specular reflectivity
3. Perturb normal using 3 octaves of animated 

noise.
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Animated ‘Wetness’ Noise

Just barely perturbs the normal
…only visible through dancing specular

highlights. 
Just add it once (after tri-planar projection)
For each octave:
1. Start with world-space coord (but at varying 

scales/swizzles)
2. Add current Time value to .Y – creates downward 

flow
3. Sample the noise volume.

Use mipmap bias of +1 (slightly blurry).
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Displacement Mapping

Review of Pixel Shader techniques:
Bump Mapping / Normal Mapping plays with the 
normal, and hence the light, so geometrically flat 
surfaces can appear “wrinkled.”
Parallax Mapping virtually pushes texels 
“underneath” the polygon surface, at varying 
depths, creating the illusion of parallax as the 
camera angle changes.
Pixel Shader Displacement Mapping adds the 
ability for texels to occlude each other.



© NVIDIA Corporation 2006

Displacement Mapping

Our displacement technique:

A height map, matched to the color / bump map, 
“sinks” texels to various depths below the polygon 
surface.
Brute-force ray cast.
Uses simple height map.

( no precomputed cone maps, etc. )
Works with tri-planar texturing.

- Demo -
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Displacement Mapping

For each pixel…
For each planar projection…

Start with the original UV coordinates.
Run the displacement algorithm; you end 
up with modified UV coordinates (UV’).
Use UV’ for the final color / bump texture 
lookups for this projection.
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Displacement Mapping

Finding the modified UV coordinates:
March along the eye ray - 10 steps - until 
you hit the virtual [sunken] surface.
At each step…
1. get ray depth below surface
2. get UV coord (re-project)
3. sample height map at UV coord
4. first time ray depth exceeds that of sample, 

we hit the rock; hang on to those UV coords.







The first 10 steps determine the 
inter-texel occlusion silhouette.

Then 5 more refinement steps 
further hone the intersection 
point and return a more 
accurate new UV coord.
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Displacement Mapping

float2 dUV = -tsEyeVec.xy * 0.08;  //~displm’t depth
float  prev_hits = 0;
float  hit_h = 0;                  // THE OUTPUT
for (int it=0; it<10; it++) {

h  -= 0.1f;
uv += dUV;
float h_tex = HeightMap.SampleLevel(samp,uv,0).x;
float is_first_hit = saturate( 

(h_tex – h - prev_hits)*4999999 );
hit_h += is_first_hit * h;
prev_hits += is_first_hit;

}
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Displacement Mapping

Dynamic Branching helps immensely
Usually skip 1-2 projections based on the 
normal
Skip all 3 if pixel far away!

Not covered here: “basis fix” to make the 
displacement extrude in the direction of the 
actual polygon face.





16 / 8



10 / 5



7 / 3



4 / 2
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Displacement Mapping

Height maps get sampled OFTEN…
Therefore:

Keep separate (don’t pack into color alpha 
channel!) for happy caching
Use DXGI_FORMAT_R8_UNORM (mono, 8 bits) 
or DXGI_FORMAT_BC4_UNORM (mono, 4 bits).
Photoshop Tips:

Gaussian blur (high frequencies bad)
Hi-pass filter (keeps displacement “happening”)



1) original color map1) original color map 2) green 2) green chch + auto levels+ auto levels

3) HPF @ 163) HPF @ 16 4) HPF @ 44) HPF @ 4
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Detail Maps

Detail Maps enhance textures when viewer 
very close to surface.

Otherwise we see large, ugly, bilinearly-
interpolated texels.

Just one set of detail textures for the whole 
demo.

one color detail texture (~sandy noise)
one bump detail map (~divots, creases).



Color detail map
(256 x 256)

Bump detail map
(1024 x 1024)
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Texture Creation

19 rock texture sets

Each has 3 coordinated maps:
Color map  (1536x1536, 4 ch)
Bump map (1536x1536, 2 ch)
Displacement height map (1 ch, half-size)

Looks terrible if they don’t match up well…
so height maps (for bump, displacement) 
derived from color maps.

Usually from green channel.  (?)
High-pass filters (radius ~96 pix)
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Texture Creation

Most color maps were made from photos.
Ideally want evenly lit rock surface color…

Morning fog
Or sun perpendicular to rock surface
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“1/R” Height Map Filtering

Height maps were run through a special blur kernel 
before being used to create bump maps.
Makes resulting bump maps look more organic / 
less flat.
Like a gaussian blur, but kernel shape different.

Approximated by weighted sum of 4 gaussians of varying 
radii.  See slide notes.



Original height 
map

Using bump map 
created from 
original height 
map

Using bump map 
created from 1/R-
filtered height 
map
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Water
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Water

Demo
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Structure

Water is a particle system on the GPU
Dynamically flows over arbitrary rock
Interactive placement by user

Stored in a Vertex Buffer
Each particle is a vertex
Geometry Shader’s variable output allows the number of 
particles to rise and fall
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Updating the Particles

Water VB is double buffered
Set up one VB as input
Process vertices (particles) in the shader
Stream out updated particles to the other VB
Next frame, swap VB’s

GS

VB_A

VB_B

Geometry Shader allows variable output
A single emitter particle spawns many output particles
Expired particles are discarded in the GS
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Water Particle Types

Five particles types, in three categories
Emitter
Water (two types)
Mist (two types)

Particles of all types are stored in the same VB and 
processed by the same GS

Particles can change types
Particles can spawn other types of particles

Dynamic Branching in the shaders enables their 
different behaviors
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Update: Emitter Particles

In the shader, each input emitter outputs itself plus 
several new water particles.

Each waterfall actually has several emitter particles 
at the same location

Parallelize the work of creating new water particles
GS performs better with fewer/smaller outputs
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Update: Water Particles

Sliding Water
Subject to gravity and sliding friction
Sticks to the rock surface
Changes back to falling water when it goes over an edge

Falling Water
Subject to gravity and air resistance
Handles collisions with rock
Turns into sliding water or mist



© NVIDIA Corporation 2006

Water-Rock Interaction

Rock is fully described by 
3D textures

Use density texture to test 
for collisions (rock vs. air)

Use surface normal texture 
to move the sliding water
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Update: Mist Particles

Falling Mist
Created randomly from falling water
Water particles live longer than mist particles

Collision Mist
Created sometimes when falling particles collide with rock

(Both Mist Types)
Move like Falling Water
Cannot change back to being Water



© NVIDIA Corporation 2006

Drawing the Water

Water particles drawn using quads

Sliding water quads are parallel to rock

Falling water and mist face the screen
Smooth transition between sliding and falling
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Billboarding: Obvious Approach

CA

B D

GS

Particles
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GS Performance

GS performance improves when output size is small 
(either few vertices, or few attributes per vertex)

These vertices have many attributes used for shading
25 floats per vertex * 4 vertices = 100 outputted

In general, it’s better to spread heavy workloads 
over many threads to ensure maximum parallelism

Calculating these positions is not trivial
Different particle types
Smooth transitions
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A Faster Way

Each particle is duplicated 6 
times (enough vertices for two 
triangles) by the GS

12 floats per particle * 3 = 36 
outputted (max)

In the VS, SV_VertexID%6 is 
used to index a Constant Buffer

2 floats per vertex for xy offset
2 floats per vertex for texCoord

The VS moves the vertex to the 
billboard’s corner and assigns 
its texture coordinate

A B C D E F

AB
D

E F

GS

VS

C

A BF

Particles

GS GS GS
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Texturing the Billboards

Every frame, 256 small water drops are 
drawn into a small render target

The droplets wiggle around 
independently on a sum of different 
frequency sine waves
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Texturing the Billboards

Falling water uses a small sub-
rectangle of this dynamic 
“droplets” texture

Result: Each simulated particle’s 
billboard looks like many 
independently-moving water 
droplets.

Even though they all use the same 
texture, every billboard looks 
different, because of their unique 
sub-rectangle
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Texturing the Billboards

Sliding water uses a moving window 
over a static texture

Texture wraps seamlessly

X coordinates within the texture differ 
between particles

Y coordinates constantly slide 
upwards over time

Features of the texture appear to be 
flowing faster than the particle is actually 
moving
Makes it harder to identify individual 
quads with your eye
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Specular Highlights

Normal vector needed

Sliding water is parallel to the rock
Surface normal of the rock is modified by a bump map

Falling water quads all face the screen; No normal
Make it up!
Use any old normal map to compute spec
Mask it with the droplets texture as a spec map
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Sliding Spec
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Wet Rock

Water particles render 
themselves as points to a 
3D “wetness” texture

Additive blending sums 
many particles’ wetness 
contributions

Values sampled from the 
wetness texture are used to 
shade the rock
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Wet Rock Drying

Each frame, large quads are 
drawn to each slice of the 3D 
wetness texture

Subtractive blending reduces 
wetness

An 8 bit UNORM DXGI texture 
format offers free clamping of 
values to [0,1]

Floats would require double-
buffering with blending and 
clamping computed by a 
shader
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Introducing Variation

Every particle has a unique, fixed number that 
influences:

Movement (speed and direction)
Likelihood of turning to mist
Size of billboard
Texture coordinates for drawing

Shaders need a random number generator
Update a seed in a CB from the application every frame
Multiply it by the Vertex_ID before using it
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Random Numbers

cbuffer RandomCB {
float randomSeed;

}

void seedRandomNumberGenerator(const float seed) {
// randomSeed is changed by the app
// at the beginning of every frame
randomSeed *= frac(3.14159265358979 * seed);

}

float urand() {
randomSeed = (((7271.2651132 * (randomSeed +
0.12345678945687)) % 671.0) + 1.0) / 671.0;
return randomSeed;

}
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Flocking
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Dragonflies

Behavior is calculated on the GPU
Including collision avoidance

Each dragonfly is stored as a vertex
Vertex Buffer is double-buffered
Shader updates a dragonfly’s vertex
Results are Streamed Out to other VB

(Just like the water particles!)
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Where Are They Going?

Two invisible, moving attractors are 
updated by the application every 
frame, stored in a CB

Attractors move on a sum of sine 
waves
In the shader, each dragonfly is 
drawn to the closer of the two 
attractors
This is what makes the dragonflies 
move together as a flock (or two 
flocks)

Random up and down wandering
Each dragonfly has a different 
frequency for a sine wave
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Look Out For The Rock

Dragonflies are able to sample 
the Rock 3D texture to avoid 
flying into the rock

The shader tests several 
random directions ahead of 
the dragonfly for the 
existence of rock

Much stronger influence than 
the attractors, to allow 
sharper turns
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Drawing the Dragonflies

Three different models for the 
dragonfly (LOD)

Positions and velocities are 
read back to the CPU

But double-buffered to avoid a 
stall

Distance from camera 
determines the LOD for each

Three Instanced draw calls are 
made, to draw all LODs
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The End.
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New Developer Tools at GDC 02007

SDK 10

PerfKit 5 FX Composer 2

GPU-Accelerated
Texture Tools

ShaderPerf 2

Shader Library
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